000 01805cam a2200301Ii 4500
001 on1099869989
003 OCoLC
007 ta
008 210114s2020 flua b 001 0 eng d
020 _a1138079227
020 _a9781138079229
035 _a(OCoLC)1099869989
050 _aTJ217.6
_b.K84 2020
100 1 _aKuhn, Max.
245 1 0 _aFeature engineering and selection :
_ba practical approach for predictive models /
_cMax Kuhn, Kjell Johnson.
260 _aBoca Raton :
_bCRC Press, Taylor & Francis Group,
_cc2020.
300 _axv, 297 p. :
_bill.
490 1 _aChapman & Hall/CRC data science series
504 _aIncludes bibliographical references and index.
505 0 _aIllustrative example: predicting risk of ischemic stroke -- A review of the predictive modeling process -- Exploratory visualizations -- Encoding categorical predictors -- Engineering numeric predictors -- Detecting interaction effects -- Handling missing data -- Working with profile data -- Feature selection overview -- Greedy search methods -- Global search methods.
520 _aThe process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for finding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.
650 4 _aPredictive control
_xData processing.
650 4 _aPredictive control
_xMathematical models.
650 4 _aR (Computer program language)
700 1 _aJohnson, Kjell.
830 0 _aChapman & Hall/CRC data science series.
942 _2lcc
_cBK
999 _c260
_d260