| 000 | 01805cam a2200301Ii 4500 | ||
|---|---|---|---|
| 001 | on1099869989 | ||
| 003 | OCoLC | ||
| 007 | ta | ||
| 008 | 210114s2020 flua b 001 0 eng d | ||
| 020 | _a1138079227 | ||
| 020 | _a9781138079229 | ||
| 035 | _a(OCoLC)1099869989 | ||
| 050 |
_aTJ217.6 _b.K84 2020 |
||
| 100 | 1 | _aKuhn, Max. | |
| 245 | 1 | 0 |
_aFeature engineering and selection : _ba practical approach for predictive models / _cMax Kuhn, Kjell Johnson. |
| 260 |
_aBoca Raton : _bCRC Press, Taylor & Francis Group, _cc2020. |
||
| 300 |
_axv, 297 p. : _bill. |
||
| 490 | 1 | _aChapman & Hall/CRC data science series | |
| 504 | _aIncludes bibliographical references and index. | ||
| 505 | 0 | _aIllustrative example: predicting risk of ischemic stroke -- A review of the predictive modeling process -- Exploratory visualizations -- Encoding categorical predictors -- Engineering numeric predictors -- Detecting interaction effects -- Handling missing data -- Working with profile data -- Feature selection overview -- Greedy search methods -- Global search methods. | |
| 520 | _aThe process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for finding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results. | ||
| 650 | 4 |
_aPredictive control _xData processing. |
|
| 650 | 4 |
_aPredictive control _xMathematical models. |
|
| 650 | 4 | _aR (Computer program language) | |
| 700 | 1 | _aJohnson, Kjell. | |
| 830 | 0 | _aChapman & Hall/CRC data science series. | |
| 942 |
_2lcc _cBK |
||
| 999 |
_c260 _d260 |
||