| 000 | 01710nam a2200289Ia 4500 | ||
|---|---|---|---|
| 001 | on1235950428 | ||
| 003 | OCoLC | ||
| 007 | ta | ||
| 008 | 210203r20132012caua 001 0 eng d | ||
| 020 | _a9781449321888 | ||
| 020 | _a1449321887 | ||
| 035 | _a(OCoLC)1235950428 | ||
| 040 |
_aTULIB _btha _cTULIB |
||
| 050 |
_aQA76.9.D3 _bM337 2013 |
||
| 100 | 1 | _aMcCallum, Q. Ethan. | |
| 245 | 1 | 0 |
_aBad data handbook / _cQ. Ethan McCallum. |
| 260 |
_aSebastopol, CA : _bO'Reilly, _c2013. |
||
| 300 |
_axvi, 245 p. : _bill. |
||
| 500 | _aReprint. Originally published: 2012. | ||
| 504 | _aIncludes bibliographical references and index. | ||
| 505 | 0 | _aSetting the pace : what is bad data? -- Is it just me, or does this data smell funny? -- Data intended for human consumption, not machine consumption -- Bad data lurking in plain text -- (Re)organizing the web's data -- Detecting liars and the confused in contradictory online reviews -- Will the bad data please stand up? -- Blood, sweat, and urine -- When data and reality don't match -- Subtle sources of bias and error -- Don't let the perfect be the enemy of the good : is bad data really bad? -- When databases attack : a guide for when to stick to files -- Crouching table, hidden network -- Myths of cloud computing -- The dark side of data science -- How to feed and care for your machine-learning experts -- Data traceability -- Social media : erasable ink? -- Data quality analysis demystified : knowing when your data is good enough. | |
| 650 | 4 |
_aDatabase management _xHandbooks, manuals, etc. |
|
| 650 | 4 |
_aElectronic data processing _xHandbooks, manuals, etc. |
|
| 650 | 4 | _aData editing. | |
| 650 | 4 |
_aDatabases _xQuality control. |
|
| 942 |
_2lcc _cBK |
||
| 999 |
_c261 _d261 |
||